
EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2003 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. CWA 14050-26:2003 D/E/F

CEN

WORKSHOP

AGREEMENT

CWA 14050-26

October 2003

ICS 35.200; 35.240.15

English version

Extensions for Financial Services (XFS) interface specification -
Release 3.02 - Part 26: Identification Card Unit Device Class Interface -
Migration from Version 3.00 to Version 3.02 - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland and United
Kingdom.

CWA 14050-26:2003 (E)

2

Table of Contents

Foreword... .3

1. Introduction ..5

1.1. Background to Release 3.02 5

1.2. Identification Card Readers and Writers ... 5

2. Changes to Existing Info Commands...6

2.1. WFS_INF_IDC_STATUS... 6

2.2. WFS_INF_IDC_CAPABILITIES 8

2.3. WFS_CMD_IDC_EJECT_CARD... 10

2.4. WFS_CMD_IDC_READ_RAW_DATA.. 10

2.5. WFS_CMD_IDC_CHIP_IO .. 12

2.6. WFS_CMD_IDC _RESET ... 13

2.7. WFS_CMD_IDC_CHIP_POWER .. 13

3. Changes to existing Events...15

3.1. WFS_SRVE_IDC_MEDIAREMOVED ... 15

4. Changes to C-Header file...16

CWA 14050-26:2003 (E)

3

Foreword

This CWA is revision 3.02 of the XFS interface specification.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2003-05-21. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.02.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's Reference

Part 2: Service Classes Definition; Programmer's Reference

Part 3: Printer Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash In Module Device Class Interface- Programmer's Reference

Part 16: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 2.00
(see CWA 13449) to Version 3.00 (this CWA) - Programmer's Reference

Part 17: Printer Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this
CWA) - Programmer's Reference

Part 18: Identification Card Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version
3.00 (see CWA 14050-4:2000; superseded) - Programmer's Reference

Part 19: Cash Dispenser Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00
(this CWA) - Programmer's Reference

Part 20: PIN Keypad Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (see
CWA 14050-6:2000; superseded) - Programmer's Reference

Part 21: Depository Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this
CWA) - Programmer's Reference

Part 22: Text Terminal Unit Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version
3.00 (this CWA) - Programmer's Reference

Part 23: Sensors and Indicators Unit Device Class Interface - Migration from Version 2.00 (see CWA 13449) to
Version 3.01 (this CWA) - Programmer's Reference

Part 24: Camera Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this
CWA) - Programmer's Reference

Part 25: Identification Card Device Class Interface - PC/SC Integration Guidelines

Part 26: Identification Card Device Class Interface - Migration from Version 3.00 (see CWA 14050-4:2000;

CWA 14050-26:2003 (E)

4

superseded) to Version 3.02 (this CWA) - Programmer's Reference

Part 27: PIN Keypad Device Class Interface - Migration from Version 3.00 (see CWA 14050-6:2000; superseded)
to Version 3.02 (this CWA) - Programmer's Reference

Part 28: Cash In Module Device Class Interface - Migration from Version 3.00 (see CWA 14050-15:2000;
superseded) to Version 3.02 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cenorm.be/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS
makes no warranty, express or implied, with respect to this document.

CWA 14050-26:2003 (E)

5

1. Introduction

1.1. Background to Release 3.02

The CEN XFS Workshop is a continuation of the Banking Solution Vendors Council workshop and maintains a
technical commitment to the Win 32 API. However, the XFS Workshop has extended the franchise of multi vendor
software by encouraging the participation of both banks and vendors to take part in the deliberations of the creation
of an industry standard. This move towards opening the participation beyond the BSVC's original membership has
been very successful with a current membership level of more than 20 companies.

The fundamental aims of the XFS Workshop are to promote a clear and unambiguous specification for both service
providers and application developers. This has been achieved to date by sub groups working electronically and
quarterly meetings.

The move from an XFS 3.00 specification to a 3.02 specification has been prompted by a series of factors. There
has been pressure from the market to fully support Smart/DIP card readers and card readers where there are chip
cards which are permanently connected.

The clear direction of the XFS Workshop, therefore, is the delivery of a new Release 3.02 specification based on a
C API. It will be delivered with the promise of the protection of technical investment for existing applications and
the design to safeguard future developments. All XFS 3.00 IDC clarifications still apply to this document.

1.2. Identification Card Readers and Writers
This section describes the functions provided by a generic identification card reader/writer service (IDC). These
descriptions include definitions of the service-specific commands that can be issued, using the WFSAsyncExecute,
WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This service allows for the operation of the following categories of units:
• motor driven card reader/writer
• pull through card reader (writing facilities only partially included)
• dip reader
• contactless chip card readers
• permanent chip card readers (Each chip is accessed through a unique logical service)

The following tracks/chips and the corresponding international standards are taken into account in this document:

Track 1 ISO 7811

Track 2 ISO 7811

Track 3 ISO 7811 / ISO 4909

Watermark Sweden

Chip (contacted) ISO 7816

Chip (contactless) ISO 10536.

National standards like Transac for France are not considered, but can be easily included via the forms mechanism
(see Section 7, Form Definition).

In addition to the pure reading of the tracks mentioned above, security boxes can be used via this service to check
the data of writable tracks for manipulation. These boxes (such as CIM or MM) are sensor-equipped devices that are
able to check some other information on the card and compare it with the track data.

Persistent values are maintained through power failures, open sessions, close session and system resets.

When the service controls a permanently connected chip card, WFS_ERR_UNSUPP_COMMAND will be returned
to all commands except WFS_INF_IDC_STATUS, WFS_INF_IDC_CAPABILITIES,
WFS_CMD_IDC_CHIP_POWER, WFS_CMD_IDC_CHP_IO and WFS_CMD_IDC_RESET.

CWA 14050-26:2003 (E)

6

2. Changes to Existing Info Commands

2.1. WFS_INF_IDC_STATUS
. . .
Output Param WFSIDCSTATUS lpStatus;

typedef struct _wfs_idc_status
{
WORD fwDevice;
WORD fwMedia;
WORD fwRetainBin;
WORD fwSecurity;
USHORT usCards;
WORD fwChipPower;
LPSTR lpszExtra;
} WFSIDCSTATUS, * LPWFSIDCSTATUS;

fwDevice
Specifies the state of the ID card device as one of the following flags:

Value Meaning
WFS_IDC_DEVONLINE The device is present, powered on and online (i.e.,

operational, not busy processing a request and not in an
error state).

WFS_IDC_DEVOFFLINE The device is offline (e.g., the operator has taken the
device offline by turning a switch or pulling out the
device).

WFS_IDC_DEVPOWEROFF The device is powered off or physically not connected.
WFS_IDC_DEVNODEVICE There is no device intended to be there; e.g. this type of

self service machine does not contain such a device or
it is internally not configured.

WFS_IDC_DEVHWERROR The device is present but inoperable due to a hardware
fault that prevents it from being used.

WFS_IDC_DEVUSERERROR The device is present but a person is preventing proper
device operation. The application should suspend the
device operation or remove the device from service
until the service provider generates a device state
change event indicating the condition of the device has
changed e.g. the error is removed
(WFS_IDC_DEVONLINE) or a permanent error
condition has occurred (WFS_IDC_DEVHWERROR).

WFS_IDC_DEVBUSY The device is busy and unable to process an Execute
command at this time.

fwMedia
Specifies the state of the ID card unit as one of the following flags:

Value Meaning
WFS_IDC_MEDIAPRESENT Media is present in the device, not in the entering

position and not jammed. On the Latched DIP device,
this indicates that the card is present in the device and
the card is unlatched.

WFS_IDC_MEDIANOTPRESENT Media is not present in the device and not at the
entering position.

WFS_IDC_MEDIAJAMMED Media is jammed in the device; operator intervention is
required.

WFS_IDC_MEDIANOTSUPP Capability to report media position is not supported by
the device (e.g., a typical swipe reader).

WFS_IDC_MEDIAUNKNOWN The media state cannot be determined with the device
in its current state (e.g., the value of fwDevice is
WFS_IDC_DEVNODEVICE,
WFS_IDC_DEVPOWEROFF,
WFS_IDC_DEVOFFLINE, or
WFS_IDC_DEVHWERROR).

WFS_IDC_MEDIAENTERING Media is at the entry/exit slot of a motorized device.

CWA 14050-26:2003 (E)

7

WFS_IDC_MEDIALATCHED Media is present & latched in a Latched-DIP card unit.
This means the card can be used for chip card dialog.

fwRetainBin
Specifies the state of the ID card unit retain bin as one of the following flags:

Value Meaning
WFS_IDC_RETAINBINOK The retain bin of the ID card unit is not full.
WFS_IDC_RETAINBINFULL The retain bin of the ID card unit is full.
WFS_IDC_RETAINBINHIGH The retain bin of the ID card unit is nearly full.
WFS_IDC_RETAINNOTSUPP The ID card unit does not support retain capability.

fwSecurity
Specifies the state of the security unit as one of the following flags:

Value Meaning
WFS_IDC_SECOPEN The security module is open and ready to process

cards.
WFS_IDC_SECNOTREADY The security module is not ready to process cards.
WFS_IDC_SECNOTSUPP No security module is available.

usCards
The number of cards retained; applicable only to motor driven ID card units for non-motorized
card units this value is 0. This value is persistent it is reset to zero by the
WFS_CMD_IDC_RESET_COUNT command.

fwChipPower
Specifies the state of the chip controlled by this service. Depending on the value of fwType
within the WFS_INF_IDC_CAPABILITIES structure, this can either be the chip on the
currently inserted user card or the chip on a permanently connected chip card. The state of the
chip is one of the following flags:

Value Meaning
WFS_IDC_CHIPONLINE The chip is present, powered on and online (i.e.

operational, not busy processing a request and not in an
error state).

WFS_IDC_CHIPPOWEREDOFF The chip is present, but powered off (i.e. not
contacted).

WFS_IDC_CHIPBUSY The chip is present, powered on, and busy (unable to
process an Execute command at this time).

WFS_IDC_CHIPNODEVICE A card is currently present in the device, but has no
chip.

WFS_IDC_CHIPHWERROR The chip is present, but inoperable due to a hardware
error that prevents it from being used (e.g. MUTE, if
there is an unresponsive card in the reader).

WFS_IDC_CHIPNOCARD There is no card in the device
WFS_IDC_CHIPNOTSUPP Capability to report the state of the chip is not

supported by the ID card unit device.
WFS_IDC_CHIPUNKNOWN The state of the chip cannot be determined with the

device in its current state.

lpszExtra
Points to a list of vendor-specific, or any other extended, information. The information is
returned as a series of "key=value" strings so that it is easily extensible by service providers.
Each string is null-terminated, with the final string terminating with two null characters.

CWA 14050-26:2003 (E)

8

2.2. WFS_INF_IDC_CAPABILITIES
. . .
Output Param LPWFSIDCCAPS lpCaps;

typedef struct _wfs_idc_caps
{
WORD wClass;
WORD fwType;
BOOL bCompound;
WORD fwReadTracks;
WORD fwWriteTracks;
WORD fwChipProtocols;
USHORT usCards;
WORD fwSecType;
WORD fwPowerOnOption;
WORD fwPowerOffOption;
BOOL bFluxSensorProgrammable;
BOOL bReadWriteAccessFollowingEject;
WORD fwWriteMode;
WORD fwChipPower;
LPSTR lpszExtra;
} WFSIDCCAPS, * LPWFSIDCCAPS;

wClass
Specifies the logical service class; value is WFS_SERVICE_CLASS_IDC

fwType
Specifies the type of the ID card unit as one of the following flags:

Value Meaning
WFS_IDC_TYPEMOTOR The ID card unit is a motor driven card unit.
WFS_IDC_TYPESWIPE The ID card unit is a swipe (pull-through) card unit .
WFS_IDC_TYPEDIP The ID card unit is a dip card unit. This DIP type is not

capable of latching cards entered.
WFS_IDC_TYPECONTACTLESS The ID card unit is a contactless card unit, i.e. no

insertion of the card is required.
WFS_IDC_TYPELATCHEDDIP The ID card unit is a latched dip card unit. This device

type is used when a DIP IDC device supports chip
communication. The latch ensures the consumer cannot
remove the card during chip communication. Any card
entered will automatically latch when a request to
initiate a chip dialog is made (via the
WFS_CMD_IDC_READ_RAW_DATA). The
WFS_CMD_IDC_EJECT_CARD command is used to
unlatch the card.

WFS_IDC_TYPEPERMANENT The ID card unit is dedicated to a permanently housed
chip card (no user interaction is available with this type
of card)

bCompound
Specifies whether the logical device is part of a compound physical device and is either TRUE
or FALSE.

fwReadTracks
Specifies the tracks that can be read by the ID card unit as a combination of the following flags:

Value Meaning
WFS_IDC_NOTSUPP The ID card unit can not access any track.
WFS_IDC_TRACK1 The ID card unit can access track 1.
WFS_IDC_TRACK2 The ID card unit can access track 2.
WFS_IDC_TRACK3 The ID card unit can access track 3.
WFS_IDC_TRACK_WM The ID card unit can access the Swedish Watermark

track.

CWA 14050-26:2003 (E)

9

fwWriteTracks
Specifies the tracks that can be written by the ID card unit (as a combination of the flags
specified in the description of fwReadTracks except WFS_IDC_TRACK_WM).

fwChipProtocols
Specifies the chip card protocols that are supported by the service provider as a combination of
the following flags:

Value Meaning
WFS_IDC_NOTSUPP The ID card unit can not handle chip cards.
WFS_IDC_CHIPT0 The ID card unit can handle the T=0 protocol.
WFS_IDC_CHIPT1 The ID card unit can handle the T=1 protocol.
WFS_IDC_CHIPT2 The ID card unit can handle the T=2 protocol.
WFS_IDC_CHIPT3 The ID card unit can handle the T=3 protocol.
WFS_IDC_CHIPT4 The ID card unit can handle the T=4 protocol.
WFS_IDC_CHIPT5 The ID card unit can handle the T=5 protocol.
WFS_IDC_CHIPT6 The ID card unit can handle the T=6 protocol.
WFS_IDC_CHIPT7 The ID card unit can handle the T=7 protocol.
WFS_IDC_CHIPT8 The ID card unit can handle the T=8 protocol.
WFS_IDC_CHIPT9 The ID card unit can handle the T=9 protocol.
WFS_IDC_CHIPT10 The ID card unit can handle the T=10 protocol.
WFS_IDC_CHIPT11 The ID card unit can handle the T=11 protocol.
WFS_IDC_CHIPT12 The ID card unit can handle the T=12 protocol.
WFS_IDC_CHIPT13 The ID card unit can handle the T=13 protocol.
WFS_IDC_CHIPT14 The ID card unit can handle the T=14 protocol.
WFS_IDC_CHIPT15 The ID card unit can handle the T=15 protocol.

usCards
Specifies the maximum numbers of cards that the retain bin can hold (zero if not available).

fwSecType
Specifies the type of security module used as one of the following flags:

Value Meaning
WFS_IDC_SECNOTSUPP Device has no security module.
WFS_IDC_SECMMBOX Security module of device is MMBox.
WFS_IDC_SECCIM86 Security module of device is CIM86.

fwPowerOnOption
Specifies the power-on capabilities of the device hardware, as one of the following flags;
applicable only to motor driven ID card units.

Value Meaning
WFS_IDC_NOACTION No power on actions are supported by the device
WFS_IDC_EJECT The card will be ejected on power-on (or off, see

fwPowerOffOption below).
WFS_IDC_RETAIN The card will be retained on power-on (off).
WFS_IDC_EJECTTHENRETAIN The card will be ejected for a specified time on

power-on (off), then retained if not taken. The time
for which the card is ejected is vendor dependent.

WFS_IDC_READPOSITION The card will be moved into the read position on
power-on (off).

fwPowerOffOption
Specifies the power-off capabilities of the device hardware, as one of the flags specified for
fwPowerOnOption; applicable only to motor driven ID card units.

bFluxSensorProgrammable
Specifies whether the Flux Sensor on the card unit is programmable, this can either be TRUE or
FALSE.

bReadWriteAccessFollowingEject
Specifies whether a card may be read or written after having been pushed to the exit slot with an
eject command. This value is either TRUE or FALSE. It is only TRUE if the capabilities of the
device are not affected by one of these sequences of commands.

fwWriteMode

CWA 14050-26:2003 (E)

10

A combination of the following flags specify the write capabilities, with respect to whether the
device can write low coercivity (loco) and/or high coercivity (hico) magnetic stripes:

Value Meaning
WFS_IDC_NOTSUPP Does not support writing of magnetic stripes.
WFS_IDC_LOCO Supports writing of loco magnetic stripes.
WFS_IDC_HICO Supports writing of hico magnetic stripes.
WFS_IDC_AUTO Service provider is capable of automatically

determining whether loco or hico magnetic stripes
should be written.

fwChipPower
Specifies the capabilities of the ID card unit (in relation to the user or permanent chip controlled
by the service), for chip power management as a combination of the following flags :

Value Meaning
WFS_IDC_NOTSUPP The ID card unit can not handle chip power

management.
WFS_IDC_CHIPPOWERCOLD The ID card unit can power on the chip and reset it

(Cold Reset).
WFS_IDC_CHIPPOWERWARM The ID card unit can reset the chip (Warm Reset).
WFS_IDC_CHIPPOWEROFF The ID card unit can power off the chip.

lpszExtra
Points to a list of vendor-specific, or any other extended information. The information is
returned as a series of "key=value" strings so that it is easily extensible by service providers.
Each string is null-terminated, with the final string terminating with two null characters.

2.3. WFS_CMD_IDC_EJECT_CARD
Description This command is only applicable to motor driven card readers and latched DIP card readers. For

motorized card readers, the card is driven to the exit slot from where the user can remove it. The
card remains in position for withdrawal until either it is taken or another command is issued that
moves the card.

For Latched DIP readers, this command causes the card to be unlatched (if not already unlatched),
enabling removal.

 After successful completion of this command, a WFS_SRVE_IDC_MEDIAREMOVED event is
generated to inform the application when the card is taken.

2.4. WFS_CMD_IDC_READ_RAW_DATA
Description For motor driven card readers, the ID card unit checks whether a card has been inserted. If so, all

specified tracks are read immediately. If reading the chip is requested, the chip will be contacted
and reset and the ATR (Answer To Reset) data will be read. When this command completes the
chip will be in contacted position. This command can also be used for an explicit cold reset of a
previously contacted chip.

This command should only be used for user cards and should not be used for permanently
connected chips.

If no card has been inserted, and for all other categories of card readers, the ID card unit waits for
the period of time specified in the WFSExecute call for a card to be either inserted or pulled
through. The next step is trying to read all tracks specified.

Magnetic stripe track data is converted from its 5 or 7 bit character form to 8 bit ASCII form. The
parity bit from each 5 or 7 bit magnetic stripe character is discarded. Start and end sentinel
characters are not returned to the application. Field separator characters are returned to the
application, and are also converted to 8 bit ASCII form.

CWA 14050-26:2003 (E)

11

In addition to that, a security check via a security module (i.e., MM, CIM86) can be requested. If
the security check fails however this should not stop valid data being returned. In this situation the
error WFS_ERR_IDC_SECURITYFAIL will be returned if the command specifies only security
data to be read, in all other cases WFS_SUCCESS will be returned with the lpbData field of the
output parameter set to WFS_IDC_SEC_HWERROR.

If the card unit is a latched DIP unit then the device will latch the card when the chip card will be
read, i.e. WFS_IDC_CHIP is specified (see below). The card will remain latched until a call to
WFS_CMD_IDC_EJECT_CARD is made.

Input Param LPWORD lpwReadData;

lpwReadData
Specifies which data should be read as a combination of the following flags:
Value Meaning
WFS_IDC_TRACK1 Track 1 of the magnetic stripe will be read.
WFS_IDC_TRACK2 Track 2 of the magnetic stripe will be read.
WFS_IDC_TRACK3 Track 3 of the magnetic stripe will be read.
WFS_IDC_TRACK_WM The Swedish Watermark track will be read.
WFS_IDC_CHIP The chip will be read.
WFS_IDC_SECURITY A security check will be performed.
WFS_IDC_FLUXINACTIVE If the IDC Flux Sensor is programmable it will be

disabled in order to allow chip data to be read on cards
which have no magnetic stripes.

Output Param LPWFSIDCCARDDATA *lppCardData;

lppCardData
Pointer to a null-terminated array of pointers to card data structures:

struct _wfs_idc_card_data
{
WORD wDataSource;
WORD wStatus;
ULONG ulDataLength;
LPBYTE lpbData;
WORD fwWriteMethod;
} WFSIDCCARDDATA, * LPWFSIDCCARDDATA;

wDataSource
Specifies the source of the card data as one of the following flags:
Value Meaning
WFS_IDC_TRACK1 lpbData contains data read from track 1.
WFS_IDC_TRACK2 lpbData contains data read from track 2.
WFS_IDC_TRACK3 lpbData contains data read from track 3.
WFS_IDC_CHIP lpbData contains ATR data read from the chip.
WFS_IDC_SECURITY lpbData contains the value returned by the security module.
WFS_IDC_TRACK_WM lpbData contains data read from the Swedish Watermark

track.

wStatus
Status of reading the card data. Possible values are:
Value Meaning
WFS_IDC_DATAOK The data is ok.
WFS_IDC_DATAMISSING The track/chip is blank.
WFS_IDC_DATAINVALID The data contained on the track/chip is invalid.
WFS_IDC_DATATOOLONG The data contained on the track/chip is too long.
WFS_IDC_DATATOOSHORT The data contained on the track/chip is too short.
WFS_IDC_DATASRCNOTSUPP The data source to read from is not supported by the service

provider.
WFS_IDC_DATASRCMISSING The data source to read from is missing on the card.

ulDataLength
Specifies the length of the following field lpbData.

lpbData

CWA 14050-26:2003 (E)

12

Points to the data read from the track/chip or the value returned by the security module. The
security module can return one of the following values:
Value Meaning
WFS_IDC_SEC_READLEVEL1 The security data readability level is 1.
WFS_IDC_SEC_READLEVEL2 The security data readability level is 2.
WFS_IDC_SEC_READLEVEL3 The security data readability level is 3.
WFS_IDC_SEC_READLEVEL4 The security data readability level is 4.
WFS_IDC_SEC_READLEVEL5 The security data readability level is 5.
WFS_IDC_SEC_BADREADLEVEL The security data reading quality is not acceptable.
WFS_IDC_SEC_NODATA There are no security data on the card.
WFS_IDC_SEC_DATAINVAL The validation of the security data with the specific data on

the magnetic stripe was not successful.
WFS_IDC_SEC_HWERROR The security module could not be used, because of a

hardware error.
WFS_IDC_SEC_NOINIT The security module could not be used, because it was not

initialized (e.g. CIM key is not loaded).

fwWriteMethod
Ignored for this command.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to manipulation or

hardware error. Operator intervention is required
WFS_ERR_IDC_NOMEDIA The card was removed before completion of the read

action (the event
WFS_EXEE_IDC_MEDIAINSERTED has been
generated). For motor driven devices, the read is
disabled; i.e. another command has to be issued to
enable the reader for card entry.

WFS_ERR_IDC_INVALIDMEDIA No track or chip found; card may have been inserted or
pulled through the wrong way.

WFS_ERR_IDC_CARDTOOSHORT The card that was inserted is too short. When this error
occurs the card remains at the exit slot.

WFS_ERR_IDC_CARDTOOLONG The card that was inserted is too long. When this error
occurs the card remains at the exit slot.

2.5. WFS_CMD_IDC_CHIP_IO
Description This command is used to communicate with the chip. Transparent data is sent from the application

to the chip and the response of the chip is returned transparently to the application.

The ATR of the chip must be obtained before issuing this command. The ATR for a user card
must initially be obtained through WFS_CMD_IDC_READ_RAW_DATA. The ATR for
subsequent resets of a user card can be obtained either through
WFS_CMD_IDC_READ_RAW_DATA command or through WFS_CMD_IDC_CHIP_POWER.
The ATR for permanent connected chips is always obtained through
WFS_CMD_IDC_CHIP_POWER.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
WFS_ERR_IDC_NOMEDIA There is no card inside the device.
WFS_ERR_IDC_INVALIDMEDIA No chip found; card may have been inserted the

wrong way.

CWA 14050-26:2003 (E)

13

WFS_ERR_IDC_INVALIDDATA An error occurred while communicating with the
chip.

WFS_ERR_IDC_PROTOCOLNOTSUPP The protocol used was not supported by the
service provider.

WFS_ERR_IDC_ATRNOTOBTAINED The ATR was not obtained before by issuing a
Read Command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is

removed before completion of an operation.

2.6. WFS_CMD_IDC _RESET

Description This command is used by the application to perform a hardware reset which will attempt to return
the IDC device to a known good state. This command does not over-ride a lock obtained by
another application or service handle.

If the device is a user ID card unit, the device will attempt to either retain, eject or will perform no
action on any cards found in the IDC as specified in the lpwResetIn parameter. It may not always
be possible to retain or eject the items as specified because of hardware problems. If a user card is
found inside the device the WFS_SRVE_IDC_MEDIADETECTED event will inform the
application where card was actually moved to. If no action is specified the user card will not be
moved even if this means that the IDC cannot be recovered.

If the device is a permanent chip card unit, this command will power-off the chip.

Input Param LPWORD lpwResetIn;
Specifies the action to be performed on any card found within the IDC as one of the following
values:
Value Meaning
WFS_IDC_EJECT Eject any card found.
WFS_IDC_RETAIN Retain any card found.
WFS_IDC_NOACTION No action should be performed on any card found.
If this value is NULL. The service provider will determine where to move any card found.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
WFS_ERR_IDC_SHUTTERFAIL The device is unable to open and close it’s shutter

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IDC_MEDIADETECTED This event is generated when a media is

detected during a reset.

Comments None

2.7. WFS_CMD_IDC_CHIP_POWER
Description This command handles the power actions that can be done on the chip. This command is only used

for user chips after the chip has been contacted for the first time using the

CWA 14050-26:2003 (E)

14

WFS_CMD_IDC_READ_RAW_DATA command. This command is the only way to control the
chip power for permanently connected chip cards.

Input Param LPWORD lpwChipPower;

lpwChipPower
Specifies the action to perform as one of the following flags:
Value Meaning
WFS_IDC_CHIPPOWERCOLD The chip is powered on and reset (Cold Reset).
WFS_IDC_CHIPPOWERWARM The chip is reset (Warm Reset).
WFS_IDC_CHIPPOWEROFF The chip is powered off.

Output Param NULL or LPWFSIDCCHIPPOWEROUT lpChipPowerOut ;

struct _ wfs_idc_chip_power_out
{

ULONG ulChipDataLength ;
LPBYTE lpbChipData ;
} WFSIDCCHIPPOWEROUT, * LPWFSIDCCHIPPOWEROUT;

ulChipDataLength
Specifies the length of the following field lpbChipData.

lpbChipData
Points to the ATR data responded from the chip. NULL if the action was not a power on.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_IDC_CHIPPOWERNOTSUPP The specified action is not supported by the

hardware device.
WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
WFS_ERR_IDC_NOMEDIA There is no card inside the device.
WFS_ERR_IDC_INVALIDMEDIA No chip found; card may have been inserted or

pulled through the wrong way.
WFS_ERR_IDC_INVALIDDATA An error occurred while communicating with the

chip.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is

removed before completion of the operation.

Comments The NULL return value for the output parameter is provided for backwards compatibility and is
only valid for user cards. Permanent chips must return the ATR in the output parameter. User
cards should return the ATR in the output parameter.

CWA 14050-26:2003 (E)

15

3. Changes to existing Events

3.1. WFS_SRVE_IDC_MEDIAREMOVED
Description This service event specifies that the inserted card was manually removed by the user during the

processing of a read/write command, after an eject operation, or after the card is removed by the
user in a latched DIP card unit.

Event Param None.

CWA 14050-26:2003 (E)

16

4. Changes to C-Header file
/**
* *
* xfsidc.h XFS - Identification card reader UNIT (IDC) definitions *
* *
* Version 3.02 (09/05/03) *
* *
**/

#ifndef __INC_XFSIDC__H
#define __INC_XFSIDC__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSIDCCAPS.wClass */

#define WFS_SERVICE_CLASS_IDC (2)
#define WFS_SERVICE_CLASS_NAME_IDC "IDC"
#define WFS_SERVICE_CLASS_VERSION_IDC 0x0203

#define IDC_SERVICE_OFFSET (WFS_SERVICE_CLASS_IDC * 100)

/* IDC Info Commands */

#define WFS_INF_IDC_STATUS (IDC_SERVICE_OFFSET + 1)
#define WFS_INF_IDC_CAPABILITIES (IDC_SERVICE_OFFSET + 2)
#define WFS_INF_IDC_FORM_LIST (IDC_SERVICE_OFFSET + 3)
#define WFS_INF_IDC_QUERY_FORM (IDC_SERVICE_OFFSET + 4)

/* IDC Execute Commands */

#define WFS_CMD_IDC_READ_TRACK (IDC_SERVICE_OFFSET + 1)
#define WFS_CMD_IDC_WRITE_TRACK (IDC_SERVICE_OFFSET + 2)
#define WFS_CMD_IDC_EJECT_CARD (IDC_SERVICE_OFFSET + 3)
#define WFS_CMD_IDC_RETAIN_CARD (IDC_SERVICE_OFFSET + 4)
#define WFS_CMD_IDC_RESET_COUNT (IDC_SERVICE_OFFSET + 5)
#define WFS_CMD_IDC_SETKEY (IDC_SERVICE_OFFSET + 6)
#define WFS_CMD_IDC_READ_RAW_DATA (IDC_SERVICE_OFFSET + 7)
#define WFS_CMD_IDC_WRITE_RAW_DATA (IDC_SERVICE_OFFSET + 8)
#define WFS_CMD_IDC_CHIP_IO (IDC_SERVICE_OFFSET + 9)
#define WFS_CMD_IDC_RESET (IDC_SERVICE_OFFSET + 10)
#define WFS_CMD_IDC_CHIP_POWER (IDC_SERVICE_OFFSET + 11)
#define WFS_CMD_IDC_PARSE_DATA (IDC_SERVICE_OFFSET + 12)

/* IDC Messages */

#define WFS_EXEE_IDC_INVALIDTRACKDATA (IDC_SERVICE_OFFSET + 1)
#define WFS_EXEE_IDC_MEDIAINSERTED (IDC_SERVICE_OFFSET + 3)
#define WFS_SRVE_IDC_MEDIAREMOVED (IDC_SERVICE_OFFSET + 4)
#define WFS_SRVE_IDC_CARDACTION (IDC_SERVICE_OFFSET + 5)
#define WFS_USRE_IDC_RETAINBINTHRESHOLD (IDC_SERVICE_OFFSET + 6)
#define WFS_EXEE_IDC_INVALIDMEDIA (IDC_SERVICE_OFFSET + 7)
#define WFS_EXEE_IDC_MEDIARETAINED (IDC_SERVICE_OFFSET + 8)
#define WFS_EXEE_IDC_MEDIADETECTED (IDC_SERVICE_OFFSET + 9)

/* values of WFSIDCSTATUS.fwDevice */
#define WFS_IDC_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_IDC_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_IDC_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_IDC_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_IDC_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_IDC_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_IDC_DEVBUSY WFS_STAT_DEVBUSY

CWA 14050-26:2003 (E)

17

/* values of WFSIDCSTATUS.fwMedia, WFSIDCRETAINCARD.fwPosition, */
/* WFSIDCCARDACT.fwPosition */

#define WFS_IDC_MEDIAPRESENT (1)
#define WFS_IDC_MEDIANOTPRESENT (2)
#define WFS_IDC_MEDIAJAMMED (3)
#define WFS_IDC_MEDIANOTSUPP (4)
#define WFS_IDC_MEDIAUNKNOWN (5)
#define WFS_IDC_MEDIAENTERING (6)
#define WFS_IDC_MEDIALATCHED (7)

/* values of WFSIDCSTATUS.fwRetainBin */

#define WFS_IDC_RETAINBINOK (1)
#define WFS_IDC_RETAINNOTSUPP (2)
#define WFS_IDC_RETAINBINFULL (3)
#define WFS_IDC_RETAINBINHIGH (4)

/* values of WFSIDCSTATUS.fwSecurity */

#define WFS_IDC_SECNOTSUPP (1)
#define WFS_IDC_SECNOTREADY (2)
#define WFS_IDC_SECOPEN (3)

/* values of WFSIDCSTATUS.fwChipPower */

#define WFS_IDC_CHIPONLINE (0)
#define WFS_IDC_CHIPPOWEREDOFF (1)
#define WFS_IDC_CHIPBUSY (2)
#define WFS_IDC_CHIPNODEVICE (3)
#define WFS_IDC_CHIPHWERROR (4)
#define WFS_IDC_CHIPNOCARD (5)
#define WFS_IDC_CHIPNOTSUPP (6)
#define WFS_IDC_CHIPUNKNOWN (7)

/* values of WFSIDCCAPS.fwType */

#define WFS_IDC_TYPEMOTOR (1)
#define WFS_IDC_TYPESWIPE (2)
#define WFS_IDC_TYPEDIP (3)
#define WFS_IDC_TYPECONTACTLESS (4)
#define WFS_IDC_TYPELATCHEDDIP (5)
#define WFS_IDC_TYPEPERMANENT (6)

/* values of WFSIDCCAPS.fwReadTracks, WFSIDCCAPS.fwWriteTracks,
 WFSIDCCARDDATA.wDataSource */

#define WFS_IDC_NOTSUPP 0x0000
#define WFS_IDC_TRACK1 0x0001
#define WFS_IDC_TRACK2 0x0002
#define WFS_IDC_TRACK3 0x0004

/* further values of WFSIDCCARDDATA.wDataSource */

#define WFS_IDC_CHIP 0x0008
#define WFS_IDC_SECURITY 0x0010
#define WFS_IDC_FLUXINACTIVE 0x0020
#define WFS_IDC_TRACK_WM 0x8000

/* values of WFSIDCCAPS.fwChipProtocols */

#define WFS_IDC_CHIPT0 0x0001
#define WFS_IDC_CHIPT1 0x0002
#define WFS_IDC_CHIPT2 0x0004
#define WFS_IDC_CHIPT3 0x0008
#define WFS_IDC_CHIPT4 0x0010
#define WFS_IDC_CHIPT5 0x0020
#define WFS_IDC_CHIPT6 0x0040
#define WFS_IDC_CHIPT7 0x0080
#define WFS_IDC_CHIPT8 0x0100
#define WFS_IDC_CHIPT9 0x0200
#define WFS_IDC_CHIPT10 0x0400

CWA 14050-26:2003 (E)

18

#define WFS_IDC_CHIPT11 0x0800
#define WFS_IDC_CHIPT12 0x1000
#define WFS_IDC_CHIPT13 0x2000
#define WFS_IDC_CHIPT14 0x4000
#define WFS_IDC_CHIPT15 0x8000

/* values of WFSIDCCAPS.fwSecType */

#define WFS_IDC_SECNOTSUPP (1)
#define WFS_IDC_SECMMBOX (2)
#define WFS_IDC_SECCIM86 (3)

/* values of WFSIDCCAPS.fwPowerOnOption, WFSIDCCAPS.fwPowerOffOption, */

#define WFS_IDC_NOACTION (1)
#define WFS_IDC_EJECT (2)
#define WFS_IDC_RETAIN (3)
#define WFS_IDC_EJECTTHENRETAIN (4)
#define WFS_IDC_READPOSITION (5)

/* values of WFSIDCCAPS.fwWriteMode; WFSIDCWRITETRACK.fwWriteMethod,
WFSIDCCARDDATA.fwWriteMethod */

#define WFS_IDC_UNKNOWN 0x0001
#define WFS_IDC_LOCO 0x0002
#define WFS_IDC_HICO 0x0004
#define WFS_IDC_AUTO 0x0008

/* values of WFSIDCCAPS.fwChipPower */

#define WFS_IDC_CHIPPOWERCOLD 0x0002
#define WFS_IDC_CHIPPOWERWARM 0x0004
#define WFS_IDC_CHIPPOWEROFF 0x0008

/* values of WFSIDCFORM.fwAction */

#define WFS_IDC_ACTIONREAD 0x0001
#define WFS_IDC_ACTIONWRITE 0x0002

/* values of WFSIDCTRACKEVENT.fwStatus, WFSIDCCARDDATA.wStatus */

#define WFS_IDC_DATAOK (0)
#define WFS_IDC_DATAMISSING (1)
#define WFS_IDC_DATAINVALID (2)
#define WFS_IDC_DATATOOLONG (3)
#define WFS_IDC_DATATOOSHORT (4)
#define WFS_IDC_DATASRCNOTSUPP (5)
#define WFS_IDC_DATASRCMISSING (6)

/* values WFSIDCCARDACT.wAction */

#define WFS_IDC_CARDRETAINED (1)
#define WFS_IDC_CARDEJECTED (2)
#define WFS_IDC_CARDREADPOSITION (3)

/* values of WFSIDCCARDDATA.lpbData if security is read */

#define WFS_IDC_SEC_READLEVEL1 '1'
#define WFS_IDC_SEC_READLEVEL2 '2'
#define WFS_IDC_SEC_READLEVEL3 '3'
#define WFS_IDC_SEC_READLEVEL4 '4'
#define WFS_IDC_SEC_READLEVEL5 '5'
#define WFS_IDC_SEC_BADREADLEVEL '6'
#define WFS_IDC_SEC_NODATA '7'
#define WFS_IDC_SEC_DATAINVAL '8'
#define WFS_IDC_SEC_HWERROR '9'
#define WFS_IDC_SEC_NOINIT 'A'

/* WOSA/XFS IDC Errors */

#define WFS_ERR_IDC_MEDIAJAM (-(IDC_SERVICE_OFFSET + 0))
#define WFS_ERR_IDC_NOMEDIA (-(IDC_SERVICE_OFFSET + 1))
#define WFS_ERR_IDC_MEDIARETAINED (-(IDC_SERVICE_OFFSET + 2))

CWA 14050-26:2003 (E)

19

#define WFS_ERR_IDC_RETAINBINFULL (-(IDC_SERVICE_OFFSET + 3))
#define WFS_ERR_IDC_INVALIDDATA (-(IDC_SERVICE_OFFSET + 4))
#define WFS_ERR_IDC_INVALIDMEDIA (-(IDC_SERVICE_OFFSET + 5))
#define WFS_ERR_IDC_FORMNOTFOUND (-(IDC_SERVICE_OFFSET + 6))
#define WFS_ERR_IDC_FORMINVALID (-(IDC_SERVICE_OFFSET + 7))
#define WFS_ERR_IDC_DATASYNTAX (-(IDC_SERVICE_OFFSET + 8))
#define WFS_ERR_IDC_SHUTTERFAIL (-(IDC_SERVICE_OFFSET + 9))
#define WFS_ERR_IDC_SECURITYFAIL (-(IDC_SERVICE_OFFSET + 10))
#define WFS_ERR_IDC_PROTOCOLNOTSUPP (-(IDC_SERVICE_OFFSET + 11))
#define WFS_ERR_IDC_ATRNOTOBTAINED (-(IDC_SERVICE_OFFSET + 12))
#define WFS_ERR_IDC_INVALIDKEY (-(IDC_SERVICE_OFFSET + 13))
#define WFS_ERR_IDC_WRITE_METHOD (-(IDC_SERVICE_OFFSET + 14))
#define WFS_ERR_IDC_CHIPPOWERNOTSUPP (-(IDC_SERVICE_OFFSET + 15))
#define WFS_ERR_IDC_CARDTOOSHORT (-(IDC_SERVICE_OFFSET + 16))
#define WFS_ERR_IDC_CARDTOOLONG (-(IDC_SERVICE_OFFSET + 17))

/*===*/
/* IDC Info Command Structures and variables */
/*===*/

typedef struct _wfs_idc_status
{
 WORD fwDevice;
 WORD fwMedia;
 WORD fwRetainBin;
 WORD fwSecurity;
 USHORT usCards;
 WORD fwChipPower;
 LPSTR lpszExtra;
} WFSIDCSTATUS, * LPWFSIDCSTATUS;

typedef struct _wfs_idc_caps
{
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 WORD fwReadTracks;
 WORD fwWriteTracks;
 WORD fwChipProtocols;
 USHORT usCards;
 WORD fwSecType;
 WORD fwPowerOnOption;
 WORD fwPowerOffOption;
 BOOL bFluxSensorProgrammable;
 BOOL bReadWriteAccessFollowingEject;
 WORD fwWriteMode;
 WORD fwChipPower
 LPSTR lpszExtra;
} WFSIDCCAPS, * LPWFSIDCCAPS;

typedef struct _wfs_idc_form
{
 LPSTR lpszFormName;
 CHAR cFieldSeparatorTrack1;
 CHAR cFieldSeparatorTrack2;
 CHAR cFieldSeparatorTrack3;
 WORD fwAction;
 LPSTR lpszTracks;
 BOOL bSecure;
 LPSTR lpszTrack1Fields;
 LPSTR lpszTrack2Fields;
 LPSTR lpszTrack3Fields;
} WFSIDCFORM, * LPWFSIDCFORM;

/*===*/
/* IDC Execute Command Structures */
/*===*/

typedef struct _wfs_idc_write_track
{
 LPSTR lpstrFormName;
 LPSTR lpstrTrackData;
 WORD fwWriteMethod;

CWA 14050-26:2003 (E)

20

} WFSIDCWRITETRACK, * LPWFSIDCWRITETRACK;

typedef struct _wfs_idc_retain_card
{
 USHORT usCount;
 WORD fwPosition;
} WFSIDCRETAINCARD, * LPWFSIDCRETAINCARD;

typedef struct _wfs_idc_setkey
{
 USHORT usKeyLen;
 LPBYTE lpbKeyValue;
} WFSIDCSETKEY, * LPWFSIDCSETKEY;

typedef struct _wfs_idc_card_data
{
 WORD wDataSource;
 WORD wStatus;
 ULONG ulDataLength;
 LPBYTE lpbData;
 WORD fwWriteMethod;
} WFSIDCCARDDATA, * LPWFSIDCCARDDATA;

typedef struct _wfs_idc_chip_io
{
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
} WFSIDCCHIPIO, * LPWFSIDCCHIPIO;

typedef struct _ wfs_idc_chip_power_out
{
 ULONG ulChipDataLength ;
 LPBYTE lpbChipData ;
} WFSIDCCHIPPOWEROUT, * LPWFSIDCCHIPPOWEROUT;

typedef struct _wfs_idc_parse_data
{
 LPSTR lpstrFormName;
 LPWFSIDCCARDDATA *lppCardData;
} WFSIDCPARSEDATA, * LPWFSIDCPARSEDATA;

/*===*/
/* IDC Message Structures */
/*===*/

typedef struct _wfs_idc_track_event
{
 WORD fwStatus;
 LPSTR lpstrTrack;
 LPSTR lpstrData;
} WFSIDCTRACKEVENT, * LPWFSIDCTRACKEVENT;

typedef struct _wfs_idc_card_act
{
 WORD wAction;
 WORD wPosition;
} WFSIDCCARDACT, * LPWFSIDCCARDACT;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSIDC__H */

